

The 2008 Massachusetts
Smart Growth / Smart Energy
Conference

Afternoon Workshops Section C

(3:00 PM – 4:00 PM) Session C-7

The Parking Predicament:

Demand Management While the Pressure's Off

Jason Schrieber, AICP, Principal

Presentation Outline

- 1. Why is parking so important?
- 2. What we've been doing wrong for 85 years
- 3. Mismanaging supply
- 4. Controlling demand
- 5. Why TOD works

Transportation and Climate Change

Transport sector produces substantial share of CO₂ emissions in U.S.

Source: Sightline Institute

Transportation emissions are expected to increase

Transportation energy consumption, 1980-2030 (quadrillion Btu)

Most transport emissions come from driving...

Source: "Greenhouse Gas Emissions from the US Transportation Sector," USEPA 2006.

Improved Fuel Economy and Biofuels are not enough

Analysis by Steve Winkelman, Center for Clean Air Policy, Using US DOE data in Ewing, Reid, "Growing Cooler: The Evidence on Urban Development and Climate Change," (ULI)

Climate change requires a mode shift strategy

Problems With "Supply Side" Solutions

FAST FOOD RESTAURANT WITH DRIVE-IN WINDOW (836)

Peak Parking Spaces Occupied vs: 1,000 GROSS SQUARE FEET LEASABLE AREA

On a: WEEKDAY

PARKING GENERATION RATES

Average	Range of	Standard	Number of	Average 1,000 GSF	
Rate	Rates	Deviation	Studies	Leasable Area	
9.95	3.55-15.92	3.41	18	3	

DATA PLOT AND EQUATION

Minimum Parking Requirements - Source

Example: Office Parks

Peak Occupancy Rates, in spaces per 1000 sf of building area:

Lowest: 0.94 spaces

Average: 2.52 spaces

Highest: 4.25 spaces

Typical requirement: 4.0 spaces/1000 sf

Source: ITE's Parking Generation (2nd ed., 1987)

Demand vs. Requirement: Downtown Palo Alto

Observed peak occupancy:

➤ 1.91 spaces per 1,000 s.f.

Peak occupancy w/ 10% vacancy:

> 2.1 spaces per 1,000 s.f.

Existing Requirement:

- ➤ 4 spaces per 1,000 s.f.
- ➤ Would require 5,210 more spaces than observed demand to bring downtown to 4 spaces per 1,000 sf requirement
- > At \$51K/space = \$298 million

Parking Demand in Four Main St. Districts

			Mode Split (Employee Commuting)							
City	City Pop.	Drove Alone	2 or More Person Carpool	Transit	Bicycle	Walked	Other Means	Worked at Home	Occupied Parking Spaces per 1,000 sf (non-res)	
Chico	59,900	61%	12%	1%	11%	13%	1%	1%	1.7	
Palo Alto	58,600	80%	9%	4%	3%	3%	1%	0%	1.9	
Santa Monica	84,100	74%	11%	11%	1%	2%	1%	0%	1.8	
Kirkland, WA	45,600	77%	12%	4%	0%	2%	1%	4%	1.6	

Current Parking Requirements: Hingham

Planning for Accessibility, Mobility Building Sq Ft Parking Sq Ft Growth, December 2008

Brookline

Brookline

What Land Value Are We Losing?

Office Cubicle $8' \times 9' = 72 \text{ ft}^2$

Bedroom $9' \times 11' = 99 \text{ ft}^2$

Parking Space $10' \times 20' = 200 \text{ ft}^2$

Nelson Nygaard
consulting associates

ember 2008

21

Nelson Nygaard
consulting associates

ember 2008

DOWNTOWN PARKING OCCUPANCY

Main Street - free

Building more spaces cannot solve the on-street shortage

1. Supply Management: Curb management strategies

- Eliminate ALL time limits
 - Use pricing to force turnover
- Vary pricing by block to encourage enough turnover to keep all blocks 10-15% free
 - Parking can be free at times of low demand
 - Monitor and adjust rates at least quarterly
- Extend meter hours through dining hours (at least 10pm)

Davis Square on the Busiest Night

2. Parking Demand Management

Reduce parking demand and vehicle trips by providing incentives to use other modes:

- Universal transit passes
- Parking cash-out

Parking Demand Management

Reduce parking demand and vehicle trips by providing incentives to use other modes:

Universal transit passes

- Parking cash-out
- Carsharing
- Create Transportation Management Associations
- "Unbundle" parking from development

•128 Hismess Council •Ithaca Car Share

Philly Car Share

TDM: Unbundle parking costs

 Parking spaces are sold or leased separately from residence ("unbundled")

Reduces cost of housing and commercial space

Gaia Building, Berkeley

- > 91 apartments, theater, café & office space
- 42 parking spaces supplied
- Result: 237 adult residents with just 20 cars

How land-use affects travel demand

How land-use affects travel demand

Get Parking Right

- 1. If you build the parking, they will come
 - Stop relying on parking requirements in zoning
- 2. Treat parking as a system
 - We all seek to park cheaply and conveniently not where we're "supposed" to park
- 3. If you manage the on-street "externality" of parking, you don't need parking requirements
 - Institute maximums
 - Remove minimums
- 4. Use zoning to:
 - Free-up the market to share existing resources
 - Shared-parking; Assuming private liability
 - Control demand
 - Unbundle residential parking; Cash-out employee parking; Integrate car-sharing, TMAs, etc.

For More Information

Jason Schrieber

Nelson Nygaard

consulting associates

Mobility Accessibility Sustainability

10 High Street, Suite 903 Boston, MA 02110

Tel: 617-521-9403

jschrieber@nelsonnygaard.com

www.nelsonnygaard.com

